Serotonin modulates the voltage dependence of delayed rectifier and Shaker potassium channels in drosophila photoreceptors
نویسندگان
چکیده
We describe the in situ modulation of potassium channels in a semi-intact preparation of the Drosophila retina. In whole-cell recordings of photoreceptors, rapidly inactivating Shaker channels are characterized by a conspicuously negative voltage operating range; together with a delayed rectifier, these channels are specifically modulated by the putative efferent neurotransmitter serotonin. Contrary to most potassium channel modulations, serotonin induced a reversible positive shift in the voltage operating range, of +30 mV for the Shaker channels and +10-14 mV for the delayed rectifier. The maximal current amplitudes were unaffected. Modulation was not affected by the subunit-specific Shaker mutations ShE62 and T(1;Y)W32 or a null mutation of the putative modulatory subunit eag. The modulation of both channels was mimicked by intracellularly applied GTP gamma S.
منابع مشابه
Voltage-sensitive potassium channels in Drosophila photoreceptors.
A preparation of dissociated Drosophila ommatidia is described that allows single-channel and whole-cell patch-clamp analysis of currents in identified sensory neurons. Three distinct classes of voltage-sensitive potassium conductances are characterized; all were detected in distal parts of ommatidia from sevenless mutants and hence in one cell class (R1-6 photoreceptors). Rapidly inactivating ...
متن کاملVOLTAGE-GATED K+ CHANNELS IN DROSOPHILA PHOTORECEPTORS Biophysical study of neural coding
The activity of neurons is critically dependent upon the suite of voltage-dependent ion channels expressed in their membranes. In particular, voltage-gated K+ channels are extremely diverse in their function, contributing to the regulation of distinct aspects of neuronal activity by shaping the voltage responses. In this study the role of K+ channels in neural coding is investigated in Drosophi...
متن کاملVoltage Sensitivity and Gating Charge in Shaker and Shab Family Potassium Channels
The members of the voltage-dependent potassium channel family subserve a variety of functions and are expected to have voltage sensors with different sensitivities. The Shaker channel of Drosophila, which underlies a transient potassium current, has a high voltage sensitivity that is conferred by a large gating charge movement, approximately 13 elementary charges. A Shaker subunit's primary vol...
متن کاملMolecular cloning and characterization of LKv1, a novel voltage-gated potassium channel in leech.
We have cloned a novel voltage-gated K channel, LKv1, in two species of leech. The properties of LKv1 expressed in transiently transfected HEK293 cells is that of a delayed rectifier current. LKv1 may be a major modulator of excitability in leech neurons, since antibody localization studies show that LKv1 is expressed in the soma and axons of all neurons in both the central and peripheral nervo...
متن کاملRobustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.
Determining the contribution of a single type of ion channel to information processing within a neuron requires not only knowledge of the properties of the channel but also understanding of its function within a complex system. We studied the contribution of slow delayed rectifier K+ channels to neural coding in Drosophila photoreceptors by combining genetic and electrophysiological approaches ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 14 شماره
صفحات -
تاریخ انتشار 1995